Modelling the Growth of Global Agricultural Literature: A Scienometric Study Based on CAB-Abstracts

Savita N. Nayak

Research Scholar Rani Channamma University Belagavi & Librarian, Govt. First Grade College, Ankola, Uttar Kannada, Karnataka, India e-mail: savitanageshnayak@gmail.com

Dr. V. M. Bankapur

Chairman & Head of Department
Dept. of Library and Information Science
Rani Channamma University, Belagavi –Karnataka, India
e-mail:bankapur@rediffmail.com

Abstract - This paper is an attempt to map the growth of literature on agriculture in global and national levels. The paper throws light on various growth models and applicability on global agricultural literature. It also compares growth and dynamics of top ten countries in the field. This study compares literature published for the period 1930 to 2016 with recent twenty years data. Further the study emphasises on various scientometric parameters like Relative Growth Rate (RGR), Doubling Time (Dt), Skewness, Kurtosis, Regression (r^2), supplementing with different growth patterns to check whether agriculture literature fits exponential, linear, logistic or power models. The results of the study indicate that the dynamics of world agricultural literature follows the linear and exponential growth model for recent years. The study concludes that there has been a consistent trend towards increased growth of literature in the field of agriculture.

Keywords: Scientometrics; Relative Growth Rate; Doubling Time; Agricultural Literature; Exponential Model; Growth Models; Linear Model.

1. INTRODUCTION:

The Spectacular development in scientific discoveries has led growth of knowledge in substantial manner. It eventually causes the need for study of growth of knowledge and its dynamics. Many scholars have studied the growth and dynamics of science and technology discipline. Some earlier studies Price (1966, 1975) found that exponential model best fits for growth data of publications. In early 1990s the studies by Wolfram et. al. found that linear and power model perform equally well as that of exponential model. Egghe and Ravichandra Rao analysed Wolfram data in 1992 and concluded that power model explains well the growth of science and technology literature.

Growth of literature refers to change in size of literature over a period of time. A systemic study on the increase of scholarly communication facilitates quantitative and qualitative understanding of various aspects of science. The assessments of research performance are prominent in further research studies and policy making. Scientometric indicators provide more quantitative objectivity and help to identify, compare and evaluate the strength and weakness of scientific achievement.

Agriculture has been significant area ever since the evolution of mankind. Agriculture is backbone for any countries socio-economic development. In spite of their valuable contribution to economic growth, farmers in developing countries often lack tools, money, and skill to respond to agricultural developmental challenges. Agricultural research helps to generate new technologies and improved policies which are key aspects for growth in agricultural productivity. The new agricultural research fort polio concentrates on advancing productivity, sustainable intensification and improving food safety and nutrition and thereby contributing to the area of knowledge in terms of scholarly communication. This paper is an attempt to identify, analyse and report the growth of agriculture literature in the world.

2. REVIEW OF LITERATURE

Modelling the growth of the literature using scientometrics techniques in various disciplines is prevailing from a long time. Earlier in 1963 Price argued that the scientific literature doubles approximately in 10 years and journals double in the 15 years of span.

Earlier studies by Gilberts' (1978) assess the weakness and strength by evaluating the growth of knowledge and growth of manpower by using some indicators to measuring it.

The studies carried by Gupta et al. (1999) reveals that the growth of Indian physics literature follows a logistic model and dynamics of world physics literature fits for combination of logistic and power models.

Comparison study on growth trends produced by Food scientists of India and abroad on growth of Food Science and Technology (FST) literature was carried out by Seetharam and Ravichandra Rao (1999) for covering a period between 1950 and 1990. Fitness for various models is tested in their study.

Gupta and Karisiddappa (2000) in their paper for studying the growth of scientific knowledge as reflected through publications and authors in the field of genetics from 1907-1980 concluded that the power model is best fitted for the cumulative growth of publication and author counts.

Tsay (2008) concentrate on the characteristics of hydrogen energy literature from 1965-2005 based on the database of Science Citation Index Expanded (SCIE), where the study reveals that the cumulative literature on hydrogen energy may be fitted relatively well by an exponential model.

Ramakrishna (2009) examines the growth of references over the past fifteen years (1994-2008). The results show that the linear growth model provides better fits to the observed data, whereas the exponential model provided the poorest fit.

Sangam et al. (2010) study the growth and dynamics of Indian and Chinese publications in the field of liquid crystals research (1997-2006) by applying growth models as suggested by Egghe and Ravichandra Rao (1992). The authors conclude that power model best fits for the growth of Indian literature while linear and power growth models applicable in the growth of Chinese liquid crystals literature.

Hadagali & Anandhalli (2015) study demonstrates the growth of neurology literature for the perion 1961-2010 and interprets that the observed data fits to exponential growth model. It compares Relative Growth Rate and doubling time for India and China and reveals that linear and logistic growth models does not fit for the given set of data.

Sangam and Arali (2015) study concentrates on the Growth pattern, doubling time of world and Indian Genetics literature, it inferred that the Logarithmic and Linear growth models fit well for World's genetics literature whereas for India Exponential and Logistic models fit well.

3. OBJECTIVES OF THE STUDY

The specific objectives of the study are

- To study the growth of Global Agricultural literature and compare the growth rate as reflected in the CAB Abstracts database among the world and the top ten countries.
- To examine the Relative Growth Rate(RGR) and Doubling Time (Dt.) for the Agricultural literature.
- To analyze the growth of agricultural literature for numbers of publications using different growth models

4. METHODOLOGY:

CAB Abstracts database is used as the source for the literature for this study. CAB Abstracts is the leading English-language bibliographic information service providing access to the world's applied life sciences literature. CAB Abstract claims to be the first choice to agriculture and related applied sciences in coverage. Studies carried out by Kawasaki(2004) illustrate that CAB abstracts covers 100% of Agricola, Biological & Agricultural Index Plus CAB Abstracts covers 93% of primary agricultural literature while Web of Science covers 74%, Agris 62%, Agricola 68%, Biosis 58% and other databases cover less than 50% of world agricultural literature. Therefore CAB Abstracts has a longstanding reputation for comprehensive, quality abstracting and indexing, and integrity of its data. This stands to be the first stop for the serious agricultural research.

A total of 8522261 articles for world agricultural literature has been extracted using keywords called as CABICODE by CAB thesaurus for the period 1930 to 2016. The retrieved records were examined, classified, and analyzed keeping the objectives in view. Further, the data is analyzed using MS Excel spreadsheet.

Relative Growth Rate (RGR) and Doubling Time (Dt.) of agricultural literature have been calculated, supplementing with different growth patterns to check whether the dynamics of literature best fits for exponential, linear, or logistic models.

RELATIVE GROWTH RATE (RGR) AND DOUBLING TIME (DT.)

The **Relative Growth Rate (RGR)** is the increase in number of articles / pages per unit of time. The mean Relative Growth Rate (RGR) over the specific period of interval can be calculated from the following equation:

$$R(P) = \frac{logeW2 - logeW1}{T2 - T1}$$

Whereas $R(P) \rightarrow$ Mean relative growth rate over the specific period of interval

logeW1 → natural logarithm of initial number of articles

logeW2 → natural logarithm of final number of articles after a specific period of interval

 $T2 - T1 \rightarrow$ the unit difference between the initial time and the final time

Doubling Time (Dt.)

The **doubling time(Dt.)** is the period requires for a quantity to doublein size or value.

This can be calculated by the formula

$$Dt(P) = \frac{Loge2}{R(P)} = \frac{0.693}{R(P)}$$
 Where Dt(P) \rightarrow Average doubling time of publications

STATISTICAL APPLICATIONS:

Statistical techniques have been applied to study the concentration and consistency of articles by calculating standard deviation, coefficient of variance, kurtosis and skewness.

Standard Deviation: It is used to determine how the data is spread out from the mean. The greater the standard deviation, the data is spread over greater extent.

Co-efficient of variance: It reveals the variability of distribution for different time periods.

Skewness: It is the extent to which the data are not symmetrical. Skewness value reveals the shape of the data.

Kurtosis: It is the extent to which the data is concentrated in the graph. It refers to the flatness or peakedness of the curve

GROWTH MODELS

The growth and dynamics of Agricultural Literature is analysed by applying various growth patterns and these models describe the changing size of literature over time.

Linear Growth Model: The linear growth pattern equation to calculate the least squares fit for a line is y = mx + b where m is the slope and b is the intercept.

Logistic Model: A logistic model is common sigmoid function which produces s-shaped curve. The initial stage of growth is approximately exponential, then at saturation growth slows and at maturity growth stops.

The equation is $Pt = \frac{Pequil}{Pstart + [(Pequil - Pstart)^{(1-kt)}]}$ where Pstart is starting publication at the initial time, Pequil is Equilibrium publication, K is growth constant related to doubling time(Dt) & $K = \ln(2)/Dt$ where ln is natural logarithm

Logarithmic Growth Model: The Logarithmic growth pattern equation to calculate the least squares fit through points is $y = c \ln x + b$ where c and b are constants and \ln is the natural logarithm function.

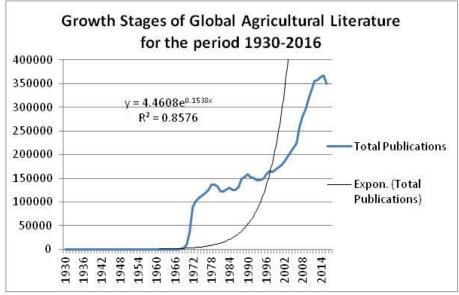
Power Model: According to Ravichandra Rao(2010) is a functional relationship between two quantity varies as the power of the other . The Power Growth pattern equation to calculate the least squares fit through points is represented by $y = cx^b$ where c & b are constants.

Exponential Growth Model: Exponential model fits to data when the growth rate is proportionate to the increase of publications for each unit of time. The Exponential Growth Pattern equation to calculate the least squares fit through points is mathematically represented $y = ce^{bx}$ where c and b are constants, and e is the base of the natural logarithm.

Polynomial Model: A polynomial is a mathematical expression consisting of a sum of terms, each term including a variable or variables raised to a power and multiplied by co-efficient. It is mathematically represented by $y = ax^2 + bx + c$ where a, b and c are constants

5. RESULTS AND DISCUSSIONS

Year wise Distribution of World Agricultural Literature 1930-2016


Table 1 depicts Year wise Distribution of World Agricultural Literature for the period 1930-2016. The global agricultural output is 8522252 records in which USA stands first with 549744 records (6.603%) followed by South Africa with 297629(3.574%), China with 295402(3.545%) and India by 196738(2.363%) records.

As observed by Price (1963), Michael Mabe(2003) & many other The growth of publication passes through four stages. In the preliminary period i.e first stage of growth in which the absolute increment in the growth of publications less but growth rate is increasing. During second stage the growth is exponential, while during the third stage annual increments remains same and growth rate decreases, during the final stage both annual increment rate and growth rate tend towards zero.

From the Table 1 it is clear that the growth in global Agricultural Literature during the preliminary period of 1930 to 1970) is growing with smaller annual increment rate. Graph 1 clearly explains the second stage from the period 1970 to 2016. A fluctuating trend was observed but the growth is exponential in nature. The maximum world contribution is observed during 2015 (366329 publications). The table also presents the Relative Growth Rate (RGR) and Doubling Time (Dt.) of global publications. The RGR of publications decreased from 0.381195 in the year 1930 to 0.042 in 2016. Simultaneously the value of doubling time increased from 2.059 in 1930 to 16.514 in 2016. It is evident from the study that research in the field of global agriculture has increased over a period of time.

Table 1: Year wise Distribution of World Agricultural Literature 1930-2016, Relative Growth Rate and Doubling Time											
mear	dt (P)	mean	W2- W1/t2-	W2	W1	ln (p)	Cumulative Articles	% of articles	Total Articles	Year	
			,,,,,,	2.30259		2.302585	10	1.17E-05	1	1930	
	2.059605		0.3365	2.63906	2.30259	2.639057	14	4.69E-05	4	1931	
2 7200	0.781018	0.38119	0.8873	3.52636	2.63906	3.526361	34	0.000235	20	1932	
5	0.776488	5	0.8925 0.3261	4.41884	3.52636	4.418841	83 115	0.000575	49 32	1933 1934	
2	2.12517 2.181558		0.3261	4.74493 5.0626	4.41884 4.74493	4.744932 5.062595	158	0.000375 0.000505	43	1934	
	3.868224		0.1792	5.24175	5.0626	5.241747	189	0.000364	31	1936	
	3.782689		0.1832	5.42495	5.24175	5.42495	227	0.000446	38	1937	
3	4.370963		0.1585	5.5835	5.42495	5.583496	0.266	0.000458	39	1938	
	4.62478		0.1498	5.73334	5.5835	5.733341	309	0.000505	43	1939	
	5.097251		0.136	5.8693	5.73334	5.869297	354	0.000528	45	1940	
,	9.777869		0.0709	5.94017	5.8693	5.940171	380	0.000305	26	1941	
	8.83681		0.0784	6.01859	5.94017	6.018593	411	0.000364	31 21	1942	
21.379	13.90662 33.60931	0.04892	0.0498 0.0206	6.06843 6.08904	6.01859 6.06843	6.068426 6.089045	432 441	0.000246 0.000106	9	1943 1944	
	23.85351	3	0.0200	6.1181	6.08904	6.118097	454	0.000100	13	1944	
	31.80744		0.0218	6.13988	6.1181	6.139885	464	0.000117	10	1946	
	40.53951		0.0171	6.15698	6.13988	6.156979	472	9.39E-05	8	1947	
	30.08117		0.023	6.18002	6.15698	6.180017	483	0.000129	11	1948	
ļ	16.28304		0.0426	6.22258	6.18002	6.222576	504	0.000246	21	1949	
1	19.74847		0.0351	6.25767	6.22258	6.257668	522	0.000211	18	1950	
	9.385886		0.0738	6.3315	6.25767	6.331502	562	0.000469	40	1951	
10064	8.130899	0.07368	0.0852	6.41673	6.3315	6.416732	612	0.000587	50	1952	
8	8.824285	2	0.0785	6.49527	6.41673	6.495266	662	0.000587	50	1953	
	9.517615		0.0728	6.56808	6.49527	6.568078	712	0.000587	50	1954	
	7.193938 9.397442		0.0963 0.0737	6.66441 6.73815	6.56808 6.66441	6.664409 6.738152	784 844	0.000845 0.000704	72 60	1955 1956	
	8.353929		0.0737	6.82111	6.73815	6.821107	917	0.000704	73	1957	
	9.55218		0.0725	6.89366	6.82111	6.893656	986	0.00081	69	1958	
3	10.54118		0.0657	6.9594	6.89366	6.959399	1053	0.000786	67	1959	
	7.864391		0.0881	7.04752	6.9594	7.047517	1150	0.001138	97	1960	
}	6.518268		0.1063	7.15383	7.04752	7.153834	1279	0.001514	129	1961	
4.7520	9.117824	0.10076	0.076	7.22984	7.15383	7.229839	1380	0.001185	101	1962	
	4.870703	0.19876 3	0.1423	7.37212	7.22984	7.372118	1591	0.002476	211	1963	
2	4.289012		0.1616	7.53369	7.37212	7.533694	1870	0.003274	279	1964	
	3.701695		0.1872	7.72091	7.53369	7.720905	2255	0.004518	385 399	1965	
	4.253675 3.425956		0.1629 0.2023	7.88382 8.0861	7.72091 7.88382	7.883823 8.086103	2654 3249	0.004682 0.006982	595	1966 1967	
	2.214181		0.2023	8.39909	8.0861	8.399085	4443	0.000982	1194	1968	
	1.264736		0.5479	8.94703	8.39909	8.947026	7685	0.038042	3242	1969	
	0.842581		0.8225	9.7695	8.94703	9.769499	17492	0.115075	9807	1970	
	0.617747		1.1218	10.8913	9.7695	10.89132	53708	0.424958	36216	1971	
3 20 10	0.712418		0.9727	11.8641	10.8913	11.86406	142068	1.036815	88360	1972	
2.30409	1.282911	0.48529 8	0.5402	12.4042	11.8641	12.40424	243833	1.194109	101765	1973	
3	1.864408	, o	0.3717	12.7759	12.4042	12.77594	353606	1.288075	109773	1974	
	2.475976		0.2799	13.0558	12.7759	13.05583	467815	1.340127	114209	1975	
	3.065158		0.2261	13.2819	13.0558	13.28192	586494	1.392578	118679	1976	
	3.588412		0.1931	13.475	13.2819	13.47504 13.65124	711435 848512	1.466056	124941 137077	1977	
	3.933027 4.658339		0.1762 0.1488	13.6512 13.8	13.475 13.6512	13.8	984614	1.60846 1.597019	136102	1978 1979	
	5.456866		0.1488	13.927	13.6512	13.927	1117943	1.564481	133329	1979	
	6.677597		0.1038	14.0308	13.927	14.03078	1240197	1.434527	122254	1981	
l l	7.347531		0.0943	14.1251	14.0308	14.1251	1362863	1.439361	122666	1982	
8.48139	7.765153	0.08498 9	0.0892	14.2143	14.1251	14.21434	1490084	1.49281	127221	1983	
6	8.294452	9	0.0835	14.2979	14.2143	14.29789	1619929	1.5236	129845	1984	
\$	9.315123		0.0744	14.3723	14.2979	14.37229	1745040	1.468051	125111	1985	
ŀ	10.00664		0.0693	14.4415	14.3723	14.44154	1870174	1.468321	125134	1986	
_	10.2002		0.0679	14.5095	14.4415	14.50948	2001649	1.542726	131475	1987	
	9.673527		0.0716	14.5811	14.5095	14.58112	2150306	1.744339	148657	1988	
	10.07687		0.0688	14.6499	14.5811	14.64989	2303389	1.796274	153083	1989	
	10.43586		0.0664	14.7163 14.7762	14.6499 14.7163	14.7163 14.77624	2461540 2613602	1.855742 1.784294	158151 152062	1990 1991	
	11.50114	l	0.0577	14.7702	14./103	14.77024	2013002	1.704294	132002	1771	

1993	146471	1.718689	2910864	14.88396	14.8323	14.884	0.0516	0.05170	13.42272	13.6054
1994	146248	1.716072	3057112	14.93298	14.884	14.933	0.049	2	14.13687	8
1995	149563	1.75497	3206675	14.98075	14.933	14.9807	0.0478		14.50887	
1996	159046	1.866244	3365721	15.02915	14.9807	15.0292	0.0484		14.31593	
1997	165093	1.937199	3530814	15.07704	15.0292	15.077	0.0479		14.4718	
1998	163868	1.922825	3694682	15.12241	15.077	15.1224	0.0454		15.27574	
1999	168148	1.973047	3862830	15.16691	15.1224	15.1669	0.0445		15.57108	
2000	173370	2.034321	4036200	15.21081	15.1669	15.2108	0.0439		15.78459	
2001	177152	2.078699	4213352	15.25377	15.2108	15.2538	0.043		16.13321	
2002	185802	2.180198	4399154	15.29692	15.2538	15.2969	0.0432	0.04525	16.05887	15 2646
2003	195649	2.295743	4594803	15.34044	15.2969	15.3404	0.0435	0.04525	15.92604	15.3646 5
2004	205510	2.411452	4800313	15.38419	15.3404	15.3842	0.0438	U	15.8381	3
2005	214060	2.511777	5014373	15.42782	15.3842	15.4278	0.0436		15.88456	
2006	224202	2.630784	5238575	15.47156	15.4278	15.4716	0.0437		15.84321	
2007	258441	3.032544	5497016	15.51972	15.4716	15.5197	0.0482		14.39076	
2008	280828	3.295232	5777844	15.56954	15.5197	15.5695	0.0498		13.90862	
2009	295832	3.471289	6073676	15.61947	15.5695	15.6195	0.0499		13.87848	
2010	317214	3.722185	6390890	15.67038	15.6195	15.6704	0.0509		13.61239	
2011	336834	3.952406	6727724	15.72175	15.6704	15.7217	0.0514		13.49211	
2012	356230	4.179998	7083954	15.77334	15.7217	15.7733	0.0516	0.04838	13.43145	14.3912
2013	357953	4.200216	7441907	15.82264	15.7733	15.8226	0.0493	8	14.05825	1
2014	363794	4.268754	7805701	15.87036	15.8226	15.8704	0.0477		14.52001	
2015	366329	4.2985	8172030	15.91623	15.8704	15.9162	0.0459		15.11022	
2016	350231	4.109606	8522261	15.95819	15.9162	15.9582	0.042		16.51402	

Graph 1: Growth of Global Agricultural Literature for the period 1930-2016

Block wise Distribution of Top ten countries Agricultural Literature with Relative Growth Rate and Doubling Time

Table 2 provides an overview of block wise distribution of Agricultural literature for top ten countries with the Relative Growth Rate and doubling time. For USA, the RGR of publications decreased from 0.159 in the block period 1930-40 to 0.036 in 2011-16. Simultaneously the value of doubling time increased from 2.679 in first block period to 19.602 for last block period. It is evident from the study that research in the field of American agriculture has increased over a period of eighty seven years. Similarly in African, Chinese, Indian and other countries the literature has increased over the period.

The table 2.1 clearly states the Mean relative growth rate for the period 1930-2016 lies in between 0.1185 to 0.1506 while Mean doubling Time for top ten countries lies between 5 to 12 years.

block periods a	Publication									
Geographical location	Block period	1930- 1940	1941 - 1950	1951- 1960	1961- 1970	1971- 1980	1981- 1990	1991- 2000	2001- 2010	2011- 2016
	TA	23	11	60	864	90209	103937	111704	137469	105467
United State	RGR	0.159	0.039	0.102	0.232	0.456	0.076	0.045	0.037	0.036
	Dt	2.679	6.988	7.295	4.388	2.528	9.491	15.522	18.759	19.602
	TA	19	8	28	784	31857	43429	52653	78044	90807
South Africa	RGR	0.205	0.035	0.071	0.272	0.366	0.085	0.053	0.047	0.061
	Dt	1.527	5.681	10.16	3.437	2.713	8.350	13.387	14.907	11.792
	TA	3	0	20	162	3083	18361	40399	98139	135235
China	RGR	0.037	0.000	0.204	0.208	0.287	0.189	0.105	0.095	0.102
	Dt	0.155	0.000	3.419	4.501	2.676	4.235	6.658	7.614	6.914
India	TA	7	2	1	372	18121	27198	45197	58456	47384
	RGR	0.114	0.025	0.011	0.364	0.388	0.090	0.069	0.050	0.046
	Dt	1.127	1.107	0.658	1.752	2.872	7.713	10.295	14.003	15.196
	TA	2	4	28	301	12427	17308	29160	67347	69575
Brazil	RGR	0.000	0.110	0.173	0.229	0.364	0.086	0.068	0.076	0.073
	Dt	0.000	0.456	2.462	4.172	2.541	8.688	10.351	9.175	9.570
	TA	10	7	25	223	31651	33140	32855	34606	23720
UK	RGR	0.209	0.053	0.090	0.184	0.479	0.071	0.041	0.030	0.027
	Dt	1.500	3.843	8.022	5.535	2.316	10.386	17.152	22.924	25.414
	TA	18	6	29	282	18722	21886	29073	36164	27161
Australia	RGR	0.116	0.029	0.079	0.184	0.404	0.076	0.054	0.042	0.038
	Dt	2.121	5.127	8.379	5.731	2.503	9.495	13.084	16.709	18.333
	TA	18	5	23	290	24732	28752	30056	29671	19383
Germany	RGR	0.137	0.025	0.069	0.199	0.431	0.076	0.044	0.030	0.026
	Dt	1.977	1.904	12.06	5.227	2.529	9.411	15.922	22.946	26.694
	TA	16	4	28	356	18486	21723	24838	30783	22636
Canada	RGR	0.189	0.022	0.088	0.213	0.384	0.077	0.048	0.039	0.035
	Dt	2.205	4.988	9.684	5.177	2.760	9.316	14.880	18.024	19.830
N. 11	TA	31	9	33	188	15180	18924	25224	30921	21911
Nordic countries	RGR	0.149	0.025	0.060	0.127	0.408	0.080	0.055	0.042	0.036
Coulinies	Dt	3.094	12.392	12.286	11.494	2.601	8.892	12.684	16.633	19.320

Table 2.1 : Country wise Distribution Mean Relative Growth Rate and Mean Doubling Time of Growth in Agricultural Literature for the period 1930-2016										
Country Name	USA	South Africa	China	India	Brazil	UK	Australia	Germany	Canada	Nordic countries
MRG**	0.1408	0.143	0.1506	0.1385	0.1492	0.1374	0.123	0.1239	0.132	0.1185
MDt**	10.215	8.12	5.14	7.99	5.66	10.008	8.958	10.499	9.536	11.081
**MRG→ I	Mean Rela	tive Growt	h; MDt-	Mean D	oubling Ti	me				

Vol.7(3) Jul-Sep, 2017 ISSN: 2231-4911

Descriptive Statistics: Comparative statistics for different Periods 1930-2016 (87 years) and 1997-2016 (20 Years) Table 3 helps to interpret dispersion, using statistical parameters.

Standard deviation for is an important absolute measure of dispersion. The value of standard deviation clearly shows that the publications are dispersed largely for both the periods, the dispersion is very high for 1930-2016 period.

Co-efficient of variance reveals the country wise variability of distribution for different time periods. The variability little more during 1930-2016 periods compared to 20 years span. The country-wise comparison shows that the mean number of articles observed for USA (6318.9) and least mean is observed for Nordic Countries (1292.19) The consistency level is larger and is almost similar with all the countries varying from 0.9% to 1.7% for 87 years and 0.09% to 0.6% for 20 years span.

Skewness helps to study the shape of the distribution while kurtosis refers to the flatness or peachiness of the curve. The distribution for USA literature is positively skewed by 0.264 degree for the whole period of 87 years while in the recent 20 years the distribution of data is negatively skewed by 0,028 degrees. The distribution of literature is positively skewed for all the literature from period 1930 to 2016 and countries like South Africa, China, India, Brazil, Australia and Nordic Countries for 1996-2016 and negatively skewed for UK, Germany and Canada for the same period.

For measuring **Kurtosis**, the coefficient value $\beta 2$ for China is 4.175 which is greater than normal curve value ($\beta 2$ =3) for the period 1930 - 2016. So it follows leptokurtic curve distribution while South Africa for the same period follows platykurtic curve as $\beta 2$ value is 2.116. For the other countries for the both periods they follows platykurtic curve as $\beta 2$ value is negative.

Country	Period	Mean	Median	Standard Deviation	Sample Variance	Kurtosis	Skewness (β2)	Co-Ef. Variance (%)
USA	1930 -2016	6318.89	8014	6429.246	41335202	-1.505	0.264	1.017
USA	1997-2016	14445.05	14323	2736.084	7486156	-1.692	-0.028	0.189
South Africa	1930 -2016	3421.02	2759	4335.487	18796448	2.116	1.524	1.267
	1997-2016	9539.9	8250.5	4319.134	18654919	-1.043	0.674	0.453
China	1930 -2016	3395.42	226	6335.605	40139891	4.175	2.274	1.866
	1997-2016	12664.85	9741.5	7743.58	59963028	-1.709	0.369	0.611
India	1930 -2016	2261.356	1692	2637.039	6953976	-0.492	0.847	1.166
	1997-2016	6243.2	6098	1362.858	1857383	-0.662	0.605	0.218
Brazil	1930 -2016	2254.620	895	3404.999	11594018	2.187	1.781	1.510
Drazii	1997-2016	7613.8	6742.5	3238.727	10489351	-1.707	0.191	0.425
UK	1930 -2016	1795.827	2442	1770.679	3135304	-1.884	0.055	0.986
	1997-2016	3592.65	3629	371.5569	138054.6	-1.190	-0.105	0.103
Australia	1930 -2016	1532.655	1489	1618.922	2620909	-1.256	0.444	1.056
Australia	1997-2016	3787.35	3659	634.6542	402785.9	-1.631	0.158	0.168
Commons	1930 -2016	1527.931	2133	1489.457	2218481	-1.948	0.008	0.975
Germany	1997-2016	3069.15	3081.5	303.5418	92137.61	-0.386	-0.099	0.099
Canada	1930 -2016	1366.321	1761	1393.814	1942718	-1.477	0.290	1.020
Canada	1997-2016	3155.3	3344	594.8979	353903.5	-1.609	-0.240	0.189
Nordiac	1930 -2016	1292.1954	1281	1350.849	1824794	-1.428	0.373	1.045
Countries	1997-2016	3193.75	3133.5	378.2223	143052.1	-1.347	0.154	0.118

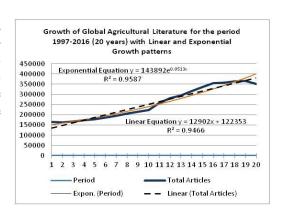
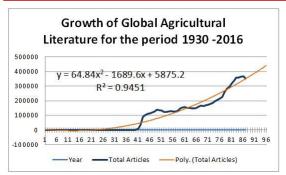
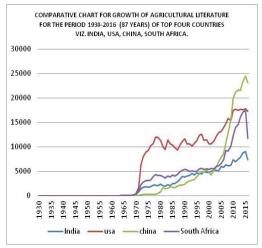

Application of Growth Models

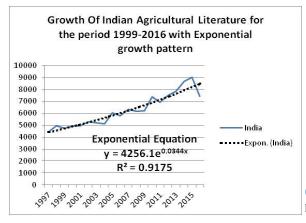
Table 3 shows the application of various growth models on different sets of agricultural literature produced by top ten countries during different span of time. The R² value for each set of data is reflected in table. It is clear from the table that the during the period 1999-2016 that growth of agricultural literature for countries Brazil, China, India, best fits in exponential, linear and polynomial of order two curve and least fits for Germany. For the total time span it best fits for polynomial of order 2.


Table 3: Application of Growth Models : R^2 value for different Periods 1930-2016 (87 years) and 1997-2016 (20 Years)									
Countries	Period	Exponential	linear	logarith mic	power	Polynomial of order 2			
USA	1930 -2016	NA	0.856	0.5535	NA	0.885			
USA	1997-2016	0.8599	0.8717	0.645	0.6421	0.8735			
Couth Africa	1930 -2016	NA	0.7434	0.4176	NA	0.9007			
South Africa	1997-2016	0.8824	0.824	0.5871	0.6629	0.8522			
China	1930 -2016	NA	0.5268	0.2471	NA	0.8474			
	1997-2016	0.9307	0.9093	0.6545	0.7275	0.9397			
India	1930 -2016	NA	0.8492	0.488	NA	0.9792			
	1997-2016	0.9175	0.8835	0.6858	0.7504	0.9			
D '1	1930 -2016	NA	0.6586	0.3353	NA	0.9227			
Brazil	1997-2016	0.9694	0.958	0.7626	0.8559	0.963			
LIIZ	1930 -2016	NA	0.7614	0.5376	NA	0.7615			
UK	1997-2016	0.5245	0.5284	0.3007	0.2954	0.5388			
A + 1: -	1930 -2016	NA	0.8723	0.5404	NA	0.9306			
Australia	1997-2016	0.8351	0.836	0.6193	0.6281	0.8447			
C	1930 -2016	NA	0.7896	0.5548	NA	0.7897			
Germany	1997-2016	0.1119	0.1015	0.0162	0.021	0.1146			
Canada	1930 -2016	NA	0.8678	0.5561	NA	0.9018			
Canada	1997-2016	0.8417	0.8511	0.7097	0.7106	0.8652			
Nordic	1930 -2016	NA	0.8878	0.5503	NA	0.9378			
Countries	1997-2016	0.8538	0.8478	0.6785	0.6943	0.8478			

Graphical Presentation of Growth of Literature: The graphs help to know the growth pattern of dynamics of global agricultural literature and agricultural literature of top countries.

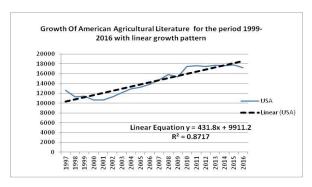
Graph 2 reveals Growth of Global Agricultural Literature for the period 1997-2016 (20 years). In the present graph the literature grows exponentially with the rate 0.0513 with coefficient of regression value 0.9587 and linear growth pattern with R² value 0.9466


.

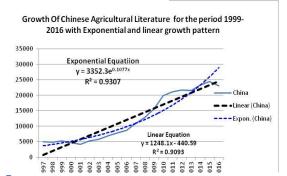

Graph 3: Growth of Global Agricultural Literature - Polynomial of order 2

Graph 3 concentrates on Growth of Global Agricultural Literature for the period 1930-2016 (87 years). In the present graph the literature growth best fits the polynomial of order 2 with coefficient of regression value 0.9451.

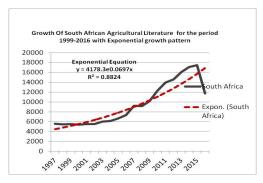
Graph 4 gives comparative chart for growth of Agricultural Literature for the period 1930-2016 (87 years) of top four countries viz. USA, China, South Africa, India. The growth of literature for the countries was very minimal for first 40 years for all the countries. United States of America (USA) stands first with maximum publications from the period 1972-2005. The growth rate of China is trending after 2005. India stands fourth position in its contribution towards growth of global agricultural literature.


Graph 4: Growth of Agricultural Literature for the period 1930-2016 - USA, China, South Africa and India.

Graph 5 plots Growth of Indian Agricultural Literature for the period 1997-2016 (20 years). In the present graph the literature grows exponentially with the rate 0.0344 with coefficient of regression value 0.9175.

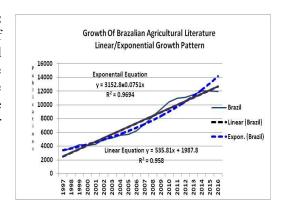

Graph 5: Growth of Indian Agricultural Literature for the period 1997-2016 (20 years)

Growth Of American Agricultural Literature for the period 1999-2016 Graph 6 plots Growth of American Agricultural Literature for the period 1997-2016 (20 years) where the growth pattern is linear with coefficient of regression value 0.8717.



Graph 6 Growth of American Agricultural Literature for the period 1997-2016 (20 years)

Growth Of Chinese Agricultural Literature for the period 1999-2016: Graph 7 shows Growth of Chinese Agricultural Literature for the period 1997-2016 (20 years). In the present graph the literature grows exponentially with the rate 0.1077 with coefficient of regression value 0.9307.


Graph 7: Growth Of Chinese Agricultural Literature for the period 1999-2016

Growth of South African Agricultural Literature for the period 1999-2016: Graph 8 provides details about Growth of African Agricultural Literature for the period 1997-2016 (20 years). In the present graph the literature grows exponentially with the rate 0.0697 with coefficient of regression value 0.8824.

Graph 8: Growth of South African Agricultural Literature for the period 1999-2016

Growth of Brazilian Agriculture Literature: Graph 9 provides details about Growth of Brazilian Agricultural Literature for the period 1997-2016 (20 years). In the present graph the literature grows exponentially with the rate 0.0751 with coefficient of regression value 0.9694 and with linear growth curve best fits for the literature with R² value 0.958.

Graph 9: Growth of Brazilian Agriculture Literature

Conclusion

The literature review on the topic divulges that scientometric techniques are considered to be the most powerful methods for conduction of quantitative studies. An attempt is made to measure the trends in various aspects of published literature in the field of agricultural literature which shows that there is a steady growth of publications. By comparing the results obtained from actual statistical fits of the different growth models and the most appropriate growth model is likely to fit. The growth of global literature in agriculture follows both the Linear Growth Model and Exponential Growth Model for 1997-2016 span while it best fits for polynomial graph function of order 2 for 1930-2016 periods. The study concludes that there has been a consistent trend towards increased growth of literature in the field of agriculture science.

References

- 1. Byarappa, Ananda T., Sangam, S.L. and Talawar, V. G. "Growth of worldwide healthcare literature." Journal of Library Development (JLD) 3.1(2017),01-09.
- 2. Gupta, B. M., and C. R. Karisiddappa. "Modelling the growth of literature in the area of theoretical population genetics." *Scientometrics* 49.2 (2000): 321-355. doi: 10.1023/A:1010577321082
- 3. Gupta, Brij Mohan, et al. "Modeling the growth of world social science literature." *Scientometrics* 53.1 (2002): 161-164.
- 4. Sangam, S. L., Liang Liming, and Gireesh A. Ganjihal. "Modeling the growth of Indian and Chinese liquid crystals literature as reflected in Science Citation Index (1997–2006)." *Scientometrics* 84.1 (2010): 49-52. Index (1997–2006). *Scientometrics*, 84(1), 49-52. (DOI: 10.1007/s11192-009-0079-x)
- 5. Venkatesan, M., S. Gopalakrishnan, and D. Gnanasekaran. "Growth of literature on climate change research: A scientometric study." Journal of Advances in Library and Information Science 2.4 (2013): 236-242.
- Sangam, S. L., and Uma Arali. "Growth versus scientific collaboration in the field of genetics: A scientometrics analysis." Collnet Journal of Scientometrics and Information Management 10.1 (2016): 9-19. Accessed through http://dx.doi.org/10.1080/09737766.2015.1069956
- 7. Sangam, S. L., Devika Madalli, and Uma B. Arali. "Scientometrics profile of global genetics literature as seen through PubMed." *Collnet Journal of Scientometrics and Information Management* 9.2 (2015): 175-192.
- 8. Hadagali, Gururaj S., and Gavisiddappa Anandhalli. "Modeling the growth of Neurology Literature." *Journal of Information Science Theory and Practice* 3.3 (2015): 45-63.
- 9. Garg, K. C., et al. "Scientometric profile of 'genetics and heredity' research in India." (2010)., Annals of Library and Information science, 57, 196–206.
- 10. Sangam, Shivappa L., et al. "Research trends in genetics: scientometric profile of selected Asian countries." *DESIDOC Journal of Library & Information Technology* 34.3 (2014). doi: 10.14429/djlit.34.5802
- 11. Sangam., S. L. Scientometrics: Quantitative Methods for Library and Information Science Content Craft Publisher. Bangalore Sagar, Anil, Basavaraj Kademani, and Karanam Bhanumurthy. "Research trends in agricultural science: A global perspective." *Journal of Scientometric Research* 2.3 (2013):185-185.

